Drought 101

Jordan Telford

The Edge You Need Irrigation • Specialty • Landscape • Equipment

Primary Objective

Provide you with a basic understanding of best irrigation/Landscape practices.

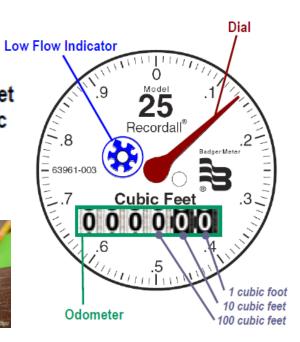
Today's Agenda

- Foundational Science of Irrigation
- Measurements Water & Money
- Products that will accomplish goals
- Healthy Soil = Healthy Plants = Drink Less

Healthy Landscapes – Save Water

- Check for leaks/repairs
- How to read water meters
- Stop sprinkler runoff
- Hydrozoning

FIX IT FIRST !!!



How to read water meters

Water meters measure cubic feet of water used. To convert cubic feet to gallons, multiply the number of cubic feet by 7.48.

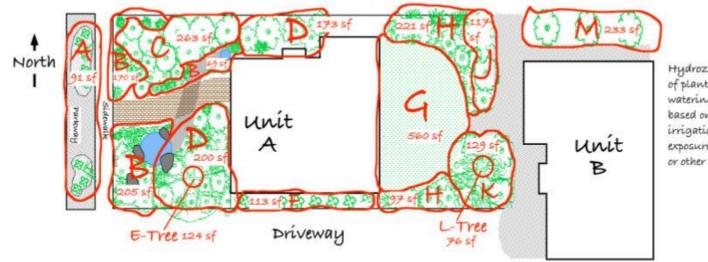
HOW TO CHECK FOR LEAKS

- Water Meter Running?
 - With irrigation system turned off.
 - Leak between meter and valves.
 - With the Backflow turned off.
 - Leak between meter and backflow.
 - Running out the heads on flat surface.
 - Irrigation Valve leaking.
 - Running out the heads on down slope surface.
 - Low head drainage, residual water in pipe after valve has closed.

Check for leaks/Repairs

Site audit

- Cycle and soak
- Water efficient sprays



Hydrozoning

SAMPLE HYDROZONE PLAN

Hydrozone = A grouping of plants with similar watering requirements based on plant type, irrigation method, sun exposure, soil type, slope or other criteria.

Minimize evaporation

Mulch, mulch, mulch

The Edge You Need

Resource Conservation

Healthier, More Affordable Landscapes Smart Irrigation Control Evapotranspiration-Coefficient of Uniformity Spray Nozzle Retrofits Pressure Regulation

The Edge You Need Irrigation • Specialty • Landscape • Equipment

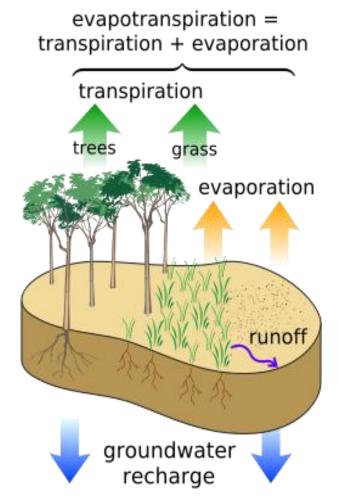
Think about this...

It is easy to know when we're under watering a landscape but...

How do we know

if we're over watering?

We Need a Starting Point…



Evapotranspiration (ET) Rate Provides that Starting Point

What is ET? ET = Evapotranspiration

A measurement of water loss from the soil (evaporation) and use by plants (transpiration) Measured in Inches Per Day (in/day) This Measurement is Known as The ET Reference Rate (ET_o)

Evapotranspiration (ET) Example

ET Based Scheduling Adjusts Daily the Valve Runtime and Application Interval by Calculating Local Weather Conditions and Plant Requirements

Example: For the Past 24 hours the amount of water used by plants and loss to evaporation = .3". The sprinkler heads of a particular zone have a precipitation rate of 1.8" per hour.

What is the ET adjusted run time? 1.8"/.3"= 6 ... divide 6 into 60 (min/hr) = 10 mins run time

And at 15 gpm we have used 150 gallons

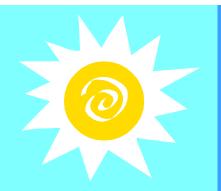
Evapotranspiration (ET) Example Continued

Same zone next day...its cloudy and calm

For the Past 24 hours the amount of water used by plants and loss to evaporation = .18". Again, the sprinkler heads of this particular zone have a precipitation rate of 1.8" per hour.

What is the ET adjusted run time?

1.8"/ .18"= 10


... divide 10 into 60 (min/hr) = 6 mins run time And at 15 gpm we have used 90 gallons

These **Daily** Adjustments are What Save Water and Maintain a Healthier Landscape

Smart Controllers

Irrigation Controllers that use ET Rate Inputs to Adjust Programs for Weather & Landscape Conditions

(And take out the guess work)

The Edge You Need

ET Based Controllers (smart controls)

Satalite based controllers

Onsite weather stations

Many can be retofitted

Sensors to save water

- MINI CLICK
- WIND CLICK
- SOLAR SYNC

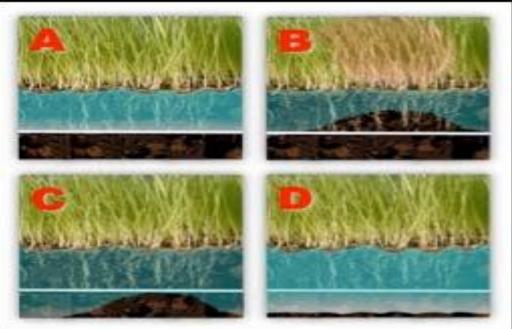
- FLOW SENSOR
 - A leak on a 1" pipe can waste 16GPM so 16GPM X 10 stations X 10 Minutes = 1600 gallons of water

Benefits to ET and proper Scheduling

Benefit Summary

- Reduced Water Cost (at least 20%)
- Healthier Landscape / **Greater Root Structure**
- Reduced Fertilizer Wash Through
- Reduced Storm and Hardscape Damage

Healthy Landscapes – Save Water



Distribution Uniformity or DU

- Measure of how evenly water is applied across a field during irrigation
- DUs of less than 70% are considered poor
- DUs of 70 90% are good
- DUs greater than 90% are excellent
- Impossible to obtain 100%
- Poor DU means that either too much water is applied costing unnecessary expense, or too little water is ap causing stress to crops
- Can be influenced by outside factors

Precipitation Rates

- The speed at which an individual irrigation nozzle or irrigation system applies water.
- Measured in inches per hour (in/hr) in the United States.
- Considering precipitation rates in an irrigation system helps
 - Eliminate run off
 - Apply the only the needed amount of water
 - Maximize plant health
 - Avoid wet and dry spots
 - Minimize water waste
 - Reduce system cost
- Use this measurement to determine how long to run your irrigation system.

- Pounds per square inch that water is moving through a designated space.
- Different nozzles call for different pressures.
- Single largest contributing factor to water usage efficiency.

High Pressure

Low Pressure

- The available amount of water coming through your irrigation system.
- Make sure you have enough water to provide for all heads on a zone.
 - Example if you have 10 heads with a precipitation rate of 1.7 gallons per minute you need at least 17
 GPM flowing through your system
- Just as important as pressure when diagnosing problems in the field
- You Can measure a couple different ways
 - A gauge that measure GPM
 - The bucket test

Standard Nozzles

- Calls for 30PSI
- 15H 1.8 in/hr
 - High output
- Not good for hard soils
- Average DU 40%

Smarter Spray Head Nozzles

- Greater DU Efficiency (Up to 75%)
- Lower Flow Rates (GPM)
- More Evenly Matched Precipitation Rates
- Radius' from 5' to 27' with fixed & adjustable arcs from 45^ to 360^
- Use less water to maintain landscape health
- Can solve zone pressure and flow problems
- Perform Best with Pressure Regulation

The Edge You Need

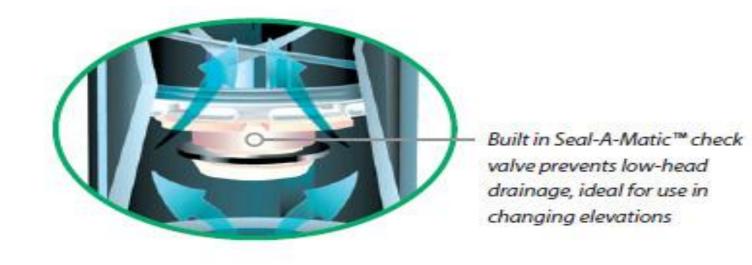
Every 5 psi over recommended operating pressure is a 10% efficiency loss

Irrigation • Specialty • Landscape • Equipment

- Maintains constant outlet pressure at 30psi (2.1 bar). Spray nozzles perform best at 30psi.
- Restricts water loss by up to 70% if nozzle is removed or damaged. Saves water and money
- Ensures consistent performance throughout zone if nozzle is removed or damaged.

1800 Spray with PRS at 79 psi inlet pressure. PRS regulates flow to 0.86 gallons per minute.

Non-PRS competitive spray at 79 psi inlet pressure. Without PRS, flow rises to 1.64 gallons per minute.


Run Out

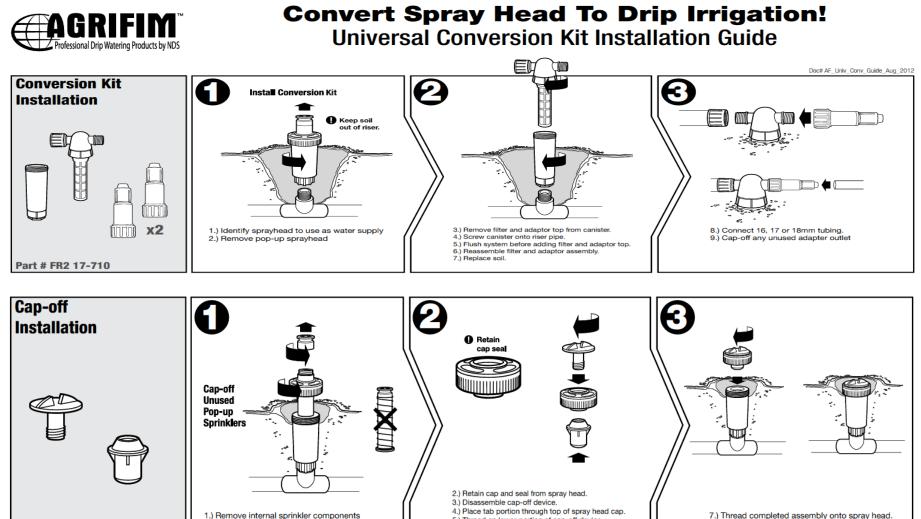
Water runs out of the lowest sprinkler head in the system once valve has turned off

- Traps water in pipes in elevation changes of up to 14 feet.
- Reduces wear on system components by minimizing water hammer during start-up.
- Prevents drainage from spray heads at lower elevations
- Stops water waste. Ends landscape damage due to flooding and/or erosion.

Geyser

Standard irrigation system can flow 14gpm through a sprinkler head ...

So if you system runs for 15 mins with a broken head you could be loosing 210 gallons of water each day.


 Flow Shield – Uses same amount of water as a 15H nozzle

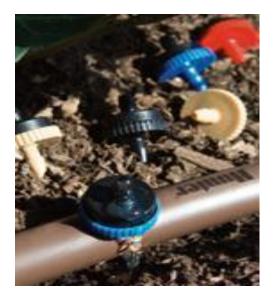
Convert Sprays to Drip Irrigation

5.) Thread on lower portion of cap-off device.

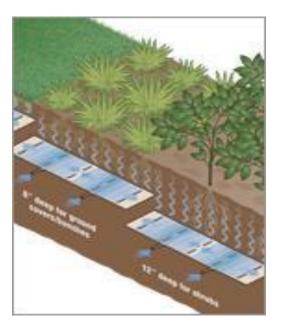
6.) Tighten lower portion to seal.

7.) Thread completed assembly onto spray head.

The Edge You Need


Part # CAP POP/25

(the stem nozzle and spring).


Irrigation • Specialty • Landscape • Equipment

Low Volume and Subsurface Irrigation

Point source Subsurface Eco-mat

ROI Calculator

http://www.hunterindustries.com/

http://rainbird.com/

Healthy Landscapes Begin in the Soil

Basic Fertilizer Turf Claims

- Color
- Stress
- Rooting
- Density
- Quality

Traditional Synthetic Fertilizers

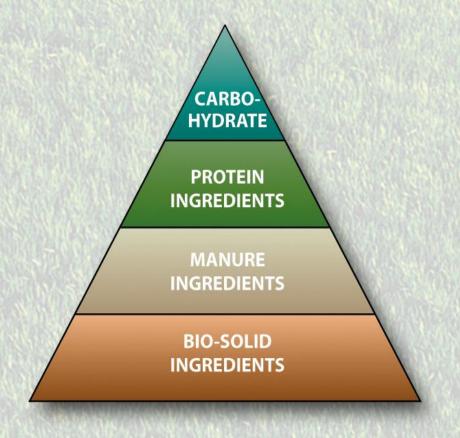
- Nutrient Mgmt
- Reduce Microbial
 Diversity
- Reduce Carbon Levels
- Collapse Soil Structure

Understanding the Basics Organic Fertilizers

"Organic Energy Concept"

Healthy Landscapes Begin in the Soil

Program Aspects


- Nutrient Mgmt
- Microbial Life
- Bio Reserves

Organic Nutritional Values

Key Organic Benefits

- 1. Provides Energy for Microbial Build-up
- 2. Increases Organic Content to Enhance Soil Structure, Water & Nutrient Retention

Natural Products

Carbon Based Products:

- Provides Non-Leaching Nutrient Base
- · Adds Energy Rich Diet to Tired Soils
- Build Microbes and Stabilizes Root Zone
- Improves Nutrient & Water Retention
- Promotes Rooting and Lateral Growth

The Role of Soil Microbes

Organic Product Impact

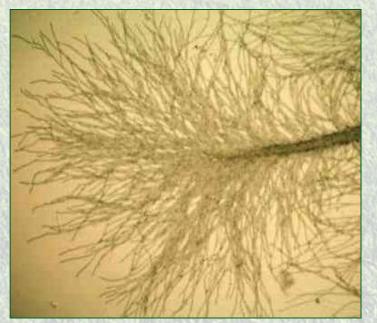
"Soil Life Opportunity"

Microbial Benefits

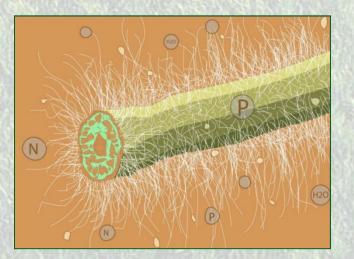
- Stimulate Existing Soil Microbes
- Establish Improved Bio Energy Foundation
- Improve Nutrient & Water Efficiencies
- Reduce Disease and Stress Problems
- Improve Soil Aggregation & Bio Diversity
- Enhance Rooting and Soil Aeration

Organic Products Builds Overall Turf Quality

"Application After Application"



Root with Microbes Nutrient Absorption!


What are Mycorrhizal Fungi?

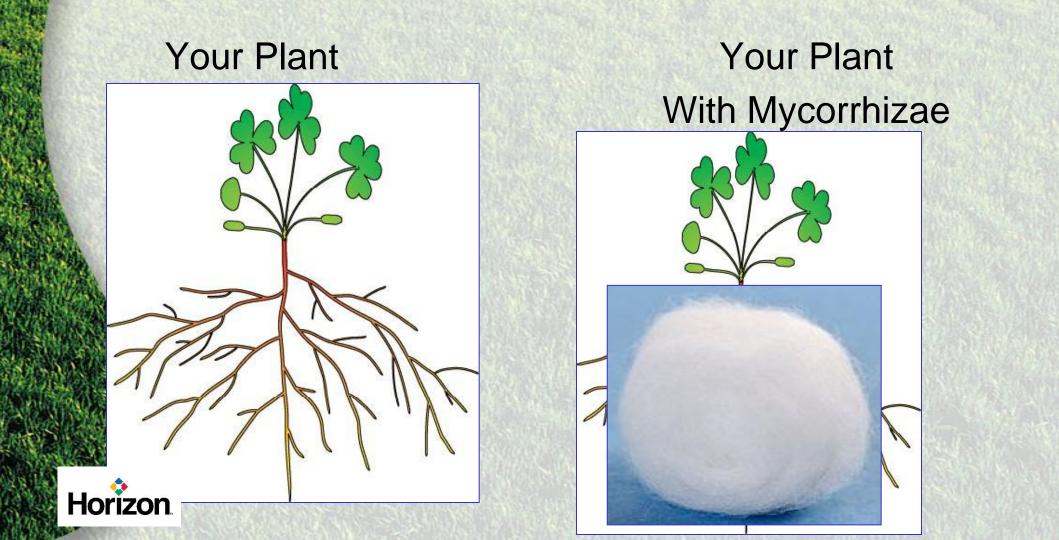
Horizon

- NATURALLY OCCURING Beneficial Fungi
- Form SYMBIOTIC relationships with plants
- Attach to roots and become EXTENSIONS of the root system

- They dramatically EXPAND ACCESS to moisture & nutrients from the soil
- In return, the host plant feeds the fungi with sugars and organic substances

Mycorrhizae Benefits

- Improved Plant Establishment & Growth
- Increased Nutrient & water Uptake
- Drought Tolerance
- Improved Disease Resistance
- Assists in Weed Suppression
- Improved Soil Structure
- More Blossoms, Fruit & Top Growth

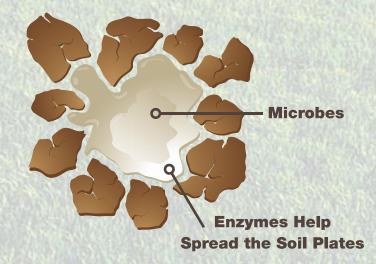

Mycorrhizal Hyphae

Mycorrhizal Hyphae form a cotton ball like mass, significantly increasing the plant's reach for nutrients & water.

Imagine a Plant


Agronomic Benefits of Microbes

Organic Product Impact "Soil Life Opportunity"


Building Soil Structure

Soil Plates

Soil Plates Stacked & Stuck Together

Soil Plates with Healthy Microbial Population

 Question: How do we get the organics and other beneficial soil additives into the soil profile?

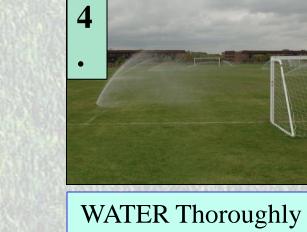
Amending Lawns with Turface after Core Aeration

AERIFY: 2 Passes

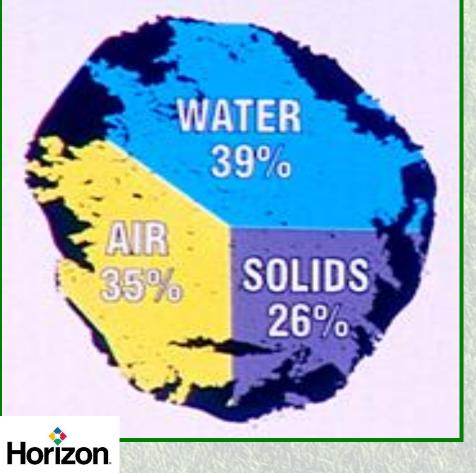
at 45°;

Collect Cores

3


Horizon

Broadcast Amendment: 250 lbs per 1,000 sq ft Plus any Seed & Fertilizer


Rake or Drag Everything into holes

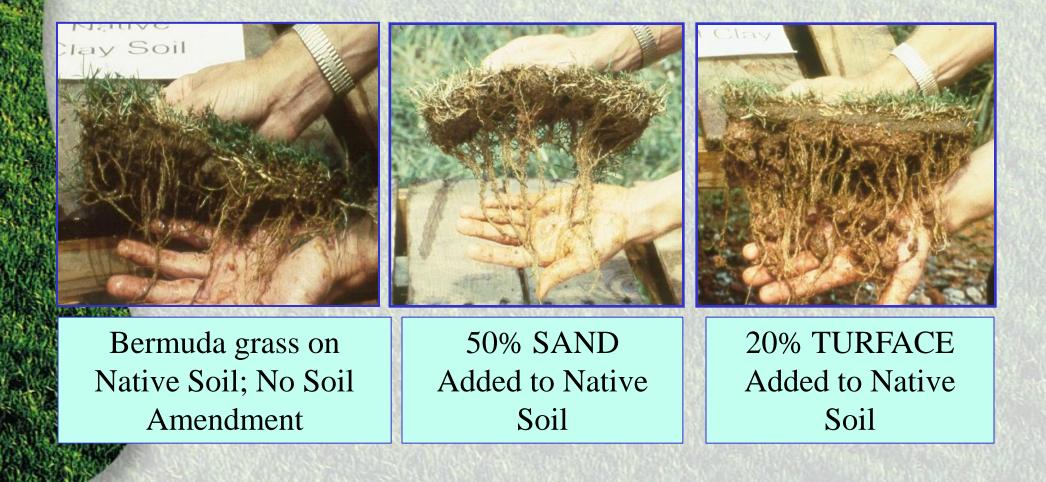
Particle Sizing & Best Uses

Turface Particles



- Hard, Durable Ceramic Granules
- 74% Total Porosity
- Absorbs 90% of its weight in water and releases it slowly
- Increases Water Infiltration
- Improves Moisture Distribution
- Improves Drainage

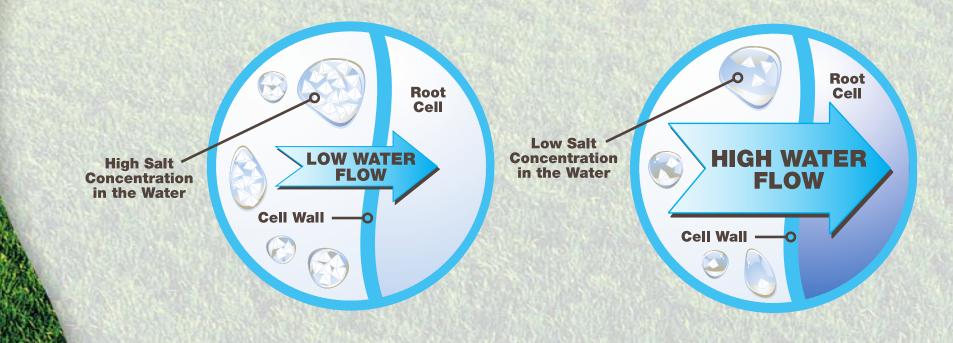
Amending Soil with Turface



By adding Turface to native soil, we are able to produce close to the "ideal soil."

Bermuda grass Lawn Amended with Turface

Reduced Water Need = Fewer Irrigation Cycles


Deep & Less Frequent Watering

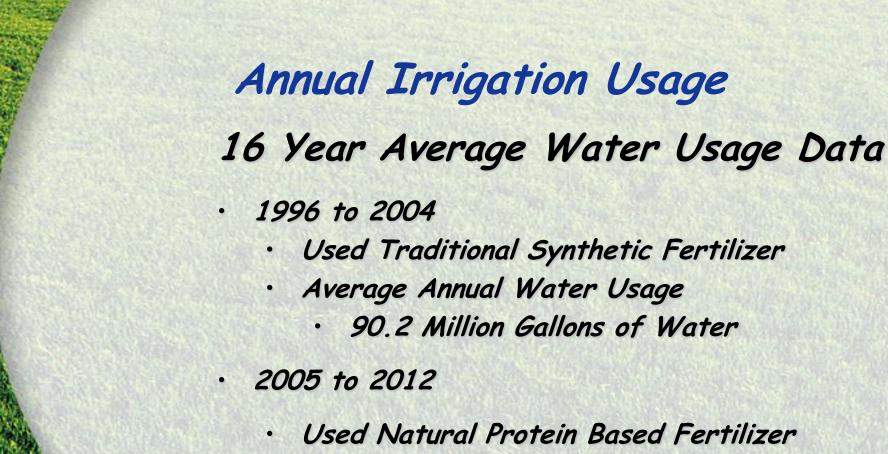
Length Between Cycles allows more time for natural rainfall to occur

Benefits to Organic Products

- Completely Organic or Bridged Organic Blend
- Eliminates or Reduces Applications of Salt
- Lack of Salt Increases Soil Available Water to Plants
- Safe for Children and Pets
- Longer Release Means Fewer Applications
- Eliminates the growth spikes in plant material with outstanding color
- Over Time Builds Soil and Beneficial Micro Organisms
- Water Conservation

Water ET Management

The Solution to Soil Health


Begins in the Root Zone

Colorado Water Management Case Study

"Water Savings Pays for Fertilizer"

- Average Annual Water Usage
 - 81.9 Million Gallons of Water

Organic Products Reduce Water Usage

"Application After Application"

- · 1996 to 2004
 - 90.2 Million Gallons of Water

Water & Cost Savings

- · 2004 to 2012
 - 81.9 Million Gallons of Water
- · Savings
 - 8.3 Million Gallons of Water
 - Water Cost = \$2.77 per 1000 gallons
 - 8300 x \$2.77 = \$22,991 SAVINGS

Organic Products Reduce Water Usage

"Application After Application"

Natural Fertilizer Cost Savings

Tangible Savings

- 8.3 Millions Gallons of Water
- \$22,991 Expense Savings
- · Electrical Cost Savings
- Reduced Annual N Rate from 3 lbs to 1.75 lbs

Intangible Savings

- · Reduced Peak Surcharge Electrical Costs
- Improve Irrigation System Efficiency
- Reduce Watering Window

Organic Products Reduce Water Usage

Selecting a Natural Fertilizer Product

Biological Fertilizer Considerations

"Total Digestible Nutrient Value"

Total Digestible Nutrient Value

- Traditional Synthetic Fertilizer = 0 TDN Value
 - Nutrient Value to Manage Cost
- Bio Solids = No TDN Value Available
 Empty Energy Tank Organic Filler
- All Manure Products = 20 TDN Value
 Low Energy Product
- All Protein Products = 80 TDN Value
 - High Energy Product

TDN Value

50

55

Horizon

Summary

Foundational Science of Irrigation Measurements - Water & Money Products that will accomplish goals Healthy Soil = Healthy Plants = Drink Less

Healthy Landscapes – Save Water

The Edge You Need Irrigation • Specialty • Landscape • Equipment

Thank you

Jordan Telford Jordan.Telford@horizononline.com

The Edge You Need Irrigation • Specialty • Landscape • Equipment